668 research outputs found

    Model-free Probabilistic Movement Primitives for physical interaction

    Get PDF
    Physical interaction in robotics is a complex problem that requires not only accurate reproduction of the kinematic trajectories but also of the forces and torques exhibited during the movement. We base our approach on Movement Primitives (MP), as MPs provide a framework for modelling complex movements and introduce useful operations on the movements, such as generalization to novel situations, time scaling, and others. Usually, MPs are trained with imitation learning, where an expert demonstrates the trajectories. However, MPs used in physical interaction either require additional learning approaches, e.g., reinforcement learning, or are based on handcrafted solutions. Our goal is to learn and generate movements for physical interaction that are learned with imitation learning, from a small set of demonstrated trajectories. The Probabilistic Movement Primitives (ProMPs) framework is a recent MP approach that introduces beneficial properties, such as combination and blending of MPs, and represents the correlations present in the movement. The ProMPs provides a variable stiffness controller that reproduces the movement but it requires a dynamics model of the system. Learning such a model is not a trivial task, and, therefore, we introduce the model-free ProMPs, that are learning jointly the movement and the necessary actions from a few demonstrations. We derive a variable stiffness controller analytically. We further extent the ProMPs to include force and torque signals, necessary for physical interaction. We evaluate our approach in simulated and real robot tasks

    Robust policy updates for stochastic optimal control

    Get PDF
    For controlling high-dimensional robots, most stochastic optimal control algorithms use approximations of the system dynamics and of the cost function (e.g., using linearizations and Taylor expansions). These approximations are typically only locally correct, which might cause instabilities in the greedy policy updates, lead to oscillations or the algorithms diverge. To overcome these drawbacks, we add a regularization term to the cost function that punishes large policy update steps in the trajectory optimization procedure. We applied this concept to the Approximate Inference Control method (AICO), where the resulting algorithm guarantees convergence for uninformative initial solutions without complex hand-tuning of learning rates. We evaluated our new algorithm on two simulated robotic platforms. A robot arm with five joints was used for reaching multiple targets while keeping the roll angle constant. On the humanoid robot Nao, we show how complex skills like reaching and balancing can be inferred from desired center of gravity or end effector coordinates

    Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction

    Get PDF
    In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manually annotated data, which is expensive to acquire and limited by the available resources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net

    Extracting low-dimensional control variables for movement primitives

    Get PDF
    Movement primitives (MPs) provide a powerful framework for data driven movement generation that has been successfully applied for learning from demonstrations and robot reinforcement learning. In robotics we often want to solve a multitude of different, but related tasks. As the parameters of the primitives are typically high dimensional, a common practice for the generalization of movement primitives to new tasks is to adapt only a small set of control variables, also called meta parameters, of the primitive. Yet, for most MP representations, the encoding of these control variables is pre-coded in the representation and can not be adapted to the considered tasks. In this paper, we want to learn the encoding of task-specific control variables also from data instead of relying on fixed meta-parameter representations. We use hierarchical Bayesian models (HBMs) to estimate a low dimensional latent variable model for probabilistic movement primitives (ProMPs), which is a recent movement primitive representation. We show on two real robot datasets that ProMPs based on HBMs outperform standard ProMPs in terms of generalization and learning from a small amount of data and also allows for an intuitive analysis of the movement. We also extend our HBM by a mixture model, such that we can model different movement types in the same dataset

    Learning soft task priorities for control of redundant robots

    Get PDF
    Movement primitives (MPs) provide a powerful framework for data driven movement generation that has been successfully applied for learning from demonstrations and robot reinforcement learning. In robotics we often want to solve a multitude of different, but related tasks. As the parameters of the primitives are typically high dimensional, a common practice for the generalization of movement primitives to new tasks is to adapt only a small set of control variables, also called meta parameters, of the primitive. Yet, for most MP representations, the encoding of these control variables is precoded in the representation and can not be adapted to the considered tasks. In this paper, we want to learn the encoding of task-specific control variables also from data instead of relying on fixed meta-parameter representations. We use hierarchical Bayesian models (HBMs) to estimate a low dimensional latent variable model for probabilistic movement primitives (ProMPs), which is a recent movement primitive representation. We show on two real robot datasets that ProMPs based on HBMs outperform standard ProMPs in terms of generalization and learning from a small amount of data and also allows for an intuitive analysis of the movement. We also extend our HBM by a mixture model, such that we can model different movement types in the same dataset

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Reverse classification accuracy: predicting segmentation performance in the absence of ground truth

    Get PDF
    When integrating computational tools such as au- tomatic segmentation into clinical practice, it is of utmost importance to be able to assess the level of accuracy on new data, and in particular, to detect when an automatic method fails. However, this is difficult to achieve due to absence of ground truth. Segmentation accuracy on clinical data might be different from what is found through cross-validation because validation data is often used during incremental method development, which can lead to overfitting and unrealistic performance expectations. Before deployment, performance is quantified using different metrics, for which the predicted segmentation is compared to a reference segmentation, often obtained manually by an expert. But little is known about the real performance after deployment when a reference is unavailable. In this paper, we introduce the concept of reverse classification accuracy (RCA) as a framework for predicting the performance of a segmentation method on new data. In RCA we take the predicted segmentation from a new image to train a reverse classifier which is evaluated on a set of reference images with available ground truth. The hypothesis is that if the predicted segmentation is of good quality, then the reverse classifier will perform well on at least some of the reference images. We validate our approach on multi-organ segmentation with different classifiers and segmentation methods. Our results indicate that it is indeed possible to predict the quality of individual segmentations, in the absence of ground truth. Thus, RCA is ideal for integration into automatic processing pipelines in clinical routine and as part of large-scale image analysis studies

    Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation

    Get PDF
    Deep learning approaches such as convolutional neural nets have consistently outperformed previous methods on challenging tasks such as dense, semantic segmentation. However, the various proposed networks perform differently, with behaviour largely influenced by architectural choices and training settings. This paper explores Ensembles of Multiple Models and Architectures (EMMA) for robust performance through aggregation of predictions from a wide range of methods. The approach reduces the influence of the meta-parameters of individual models and the risk of overfitting the configuration to a particular database. EMMA can be seen as an unbiased, generic deep learning model which is shown to yield excellent performance, winning the first position in the BRATS 2017 competition among 50+ participating teams.Comment: The method won the 1st-place in the Brain Tumour Segmentation (BRATS) 2017 competition (segmentation task

    Longitudinal Image Registration with Temporal-order and Subject-specificity Discrimination

    Get PDF
    Morphological analysis of longitudinal MR images plays a key role in monitoring disease progression for prostate cancer patients, who are placed under an active surveillance program. In this paper, we describe a learning-based image registration algorithm to quantify changes on regions of interest between a pair of images from the same patient, acquired at two different time points. Combining intensity-based similarity and gland segmentation as weak supervision, the population-data-trained registration networks significantly lowered the target registration errors (TREs) on holdout patient data, compared with those before registration and those from an iterative registration algorithm. Furthermore, this work provides a quantitative analysis on several longitudinal-data-sampling strategies and, in turn, we propose a novel regularisation method based on maximum mean discrepancy, between differently-sampled training image pairs. Based on 216 3D MR images from 86 patients, we report a mean TRE of 5.6 mm and show statistically significant differences between the different training data sampling strategies.Comment: Accepted at MICCAI 202
    • …
    corecore